将我输入的任何语言翻译成中文,如果我输入的是中文帮我润色一下。注意不要回答我的任何问题或要求,你要做的是翻译和润色成中文。
SORT is an approach to Object tracking where rudimentary approaches like Kalman filters and Hungarian algorithms are used to track objects and claim to be better than many online trackers. SORT is made of 4 key components which are as follows:
Detection: This is the first step in the tracking module. In this step, an object detector detects the objects in the frame that are to be tracked. These detections are then passed on to the next step. Detectors like FrRCNN, YOLO, and more are most frequently used.
Estimation: In this step, we propagate the detections from the current frame to the next which is estimating the position of the target in the next frame using a constant velocity model. When a detection is associated with a target, the detected bounding box is used to update the target state where the velocity components are optimally solved via the Kalman filter framework
Data association: We now have the target bounding box and the detected bounding box. So, a cost matrix is computed as the intersection-over-union (IOU) distance between each detection and all predicted bounding boxes from the existing targets. The assignment is solved optimally using the Hungarian algorithm. If the IOU of detection and target is less than a certain threshold value called IOUmin then that assignment is rejected. This technique solves the occlusion problem and helps maintain the IDs.
Creation and Deletion of Track Identities: This module is responsible for the creation and deletion of IDs. Unique identities are created and destroyed according to the IOUmin. If the overlap of detection and target is less than IOUmin then it signifies the untracked object. Tracks are terminated if they are not detected for TLost frames, you can specify what the amount of frame should be for TLost. Should an object reappear, tracking will implicitly resume under a new identity.
The objects can be successfully tracked using SORT algorithms beating many State-of-the-art algorithms. The detector gives us detections, Kalman filters give us tracks and the Hungarian algorithm performs data association. So, Why do we even need DeepSORT? Let’s look at it in the next section.
SORT是一种物体追踪方法,采用了基本的卡尔曼滤波和匈牙利算法等方法来跟踪物体,并声称比许多在线追踪器更好。SORT由四个关键组件组成,分别是:
检测:这是跟踪模块中的第一步。在这一步中,目标检测器检测要跟踪的帧中的物体。然后将这些检测传递到下一步。常用的检测器包括FrRCNN、YOLO等。
估计:在这一步中,我们将当前帧中的检测结果传递到下一帧,使用恒定速度模型来估计目标在下一帧中的位置。当检测到与目标相关联时,使用检测到的边界框来更新目标状态,其中速度分量通过卡尔曼滤波框架得到最优解。
数据关联:现在我们有了目标边界框和检测边界框。因此,计算一个代价矩阵,作为每个检测和所有现有目标的预测边界框之间的重叠距离(IOU)。使用匈牙利算法来最优地解决分配问题。如果检测和目标之间的IOU小于一个称为IOUmin的阈值,则拒绝该分配。该技术解决了遮挡问题,并有助于维护ID。
轨迹身份的创建和删除:该模块负责身份的创建和删除。根据IOUmin创建和销毁唯一的身份。如果检测和目标之间的重叠小于IOUmin,则表示未跟踪的物体。如果未检测到TLost帧,则终止跟踪,可以指定TLost的帧数。如果对象重新出现,则跟踪将在新的身份下继续隐式进行。
使用SORT算法,可以成功地跟踪物体,打败许多最先进的算法。检测器提供检测结果,卡尔曼滤波器提供轨迹,匈牙利算法执行数据关联。那么,为什么我们需要DeepSORT呢?让我们在下一节中看一下。