Access denied
You do not have access to chat.openai.com.
The site owner may have set restrictions that prevent you from accessing the site.
If you believe you should have access to the site, you can try the following:
Check if you are using the correct URL: Make sure you are using the correct web address for chat.openai.com.
Clear your browser cache and cookies: Clearing your browser cache and cookies can sometimes resolve access issues.
Try accessing the site from a different device or network: If you are unable to access the site from your current device or network, try accessing it from a different device or network.
Contact the site owner: If none of the above works, you can try contacting the site owner to request access to the site.
python实现louvain算法
以下是使用Python实现Louvain算法的基本步骤:
pip install python-louvain
import networkx as nx
G = nx.Graph()
with open('edge_list.txt', 'r') as f:
for line in f:
edge = line.strip().split()
G.add_edge(edge[0], edge[1], weight=float(edge[2]))
import community
partition = community.best_partition(G, weight='weight')
with open('community.txt', 'w') as f:
for node, community_id in partition.items():
f.write('{} {}\n'.format(node, community_id))
完整的Python代码如下:
import networkx as nx
import community
# 1. 加载数据
G = nx.Graph()
with open('edge_list.txt', 'r') as f:
for line in f:
edge = line.strip().split()
G.add_edge(edge[0], edge[1], weight=float(edge[2]))
# 2. 运行Louvain算法
partition = community.best_partition(G, weight='weight')
# 3. 输出结果
with open('community.txt', 'w') as f:
for node, community_id in partition.items():
f.write('{} {}\n'.format(node, community_id))
其中,edge_list.txt
是带权重的边列表文件,每行包含两个节点和它们之间的权重,例如:
1 2 0.5
2 3 1.2
3 4 0.8
...
community.txt
是输出文件,每行包含一个节点和它所属的社区标识符,例如:
1 0
2 0
3 1
4 1
...
输出成不同的Graph
如果你想将每个社区输出成一个单独的Graph对象,可以按以下步骤修改代码:
communities = {}
for node, community_id in partition.items():
if community_id not in communities:
communities[community_id] = [node]
else:
communities[community_id].append(node)
community_graphs = []
for community_nodes in communities.values():
community_graph = G.subgraph(community_nodes)
community_graphs.append(community_graph)
完整的代码如下:
import networkx as nx
import community
# 1. 加载数据
G = nx.Graph()
with open('edge_list.txt', 'r') as f:
for line in f:
edge = line.strip().split()
G.add_edge(edge[0], edge[1], weight=float(edge[2]))
# 2. 运行Louvain算法
partition = community.best_partition(G, weight='weight')
# 3. 将每个社区的节点保存在一个列表中
communities = {}
for node, community_id in partition.items():
if community_id not in communities:
communities[community_id] = [node]
else:
communities[community_id].append(node)
# 4. 针对每个社区,提取子图并保存为单独的Graph对象
community_graphs = []
for community_nodes in communities.values():
community_graph = G.subgraph(community_nodes)
community_graphs.append(community_graph)
# 5. 输出每个社区的Graph对象
for i, community_graph in enumerate(community_graphs):
nx.write_graphml(community_graph, 'community_{}.graphml'.format(i))
其中,edge_list.txt
是带权重的边列表文件,每行包含两个节点和它们之间的权重。
最后的输出结果是每个社区的Graph对象,保存在单独的GraphML文件中,例如:
community_0.graphml
community_1.graphml
...
使用pagerank算法,识别单独的Graph对象中影响力最大的节点
如果你想在每个社区的Graph对象中使用PageRank算法来识别影响力最大的节点,可以按以下步骤修改代码:
def get_top_pagerank_node(graph):
pr = nx.pagerank(graph)
top_node = max(pr, key=pr.get)
return top_node
for i, community_graph in enumerate(community_graphs):
top_node = get_top_pagerank_node(community_graph)
with open('community_{}_top_node.txt'.format(i), 'w') as f:
f.write(top_node)
完整的代码如下:
import networkx as nx
import community
# 1. 加载数据
G = nx.Graph()
with open('edge_list.txt', 'r') as f:
for line in f:
edge = line.strip().split()
G.add_edge(edge[0], edge[1], weight=float(edge[2]))
# 2. 运行Louvain算法
partition = community.best_partition(G, weight='weight')
# 3. 将每个社区的节点保存在一个列表中
communities = {}
for node, community_id in partition.items():
if community_id not in communities:
communities[community_id] = [node]
else:
communities[community_id].append(node)
# 4. 针对每个社区,提取子图并保存为单独的Graph对象
community_graphs = []
for community_nodes in communities.values():
community_graph = G.subgraph(community_nodes)
community_graphs.append(community_graph)
# 5. 使用PageRank算法识别每个社区中影响力最大的节点,并输出到文件中
def get_top_pagerank_node(graph):
pr = nx.pagerank(graph)
top_node = max(pr, key=pr.get)
return top_node
for i, community_graph in enumerate(community_graphs):
top_node = get_top_pagerank_node(community_graph)
with open('community_{}_top_node.txt'.format(i), 'w') as f:
f.write(top_node)
其中,edge_list.txt
是带权重的边列表文件,每行包含两个节点和它们之间的权重。
最后的输出结果是每个社区中影响力最大的节点,保存在单独的文件中,例如:
community_0_top_node.txt
community_1_top_node.txt
...
输出每个社区每个节点的影响力
如果你想输出每个社区中每个节点的影响力,可以按以下步骤修改代码:
def get_pagerank_dict(graph):
pr = nx.pagerank(graph)
pr_dict = {node: pr[node] for node in graph.nodes()}
return pr_dict
for i, community_graph in enumerate(community_graphs):
pr_dict = get_pagerank_dict(community_graph)
with open('community_{}_pagerank.txt'.format(i), 'w') as f:
for node, pr in pr_dict.items():
f.write('{} {}\n'.format(node, pr))
完整的代码如下:
import networkx as nx
import community
# 1. 加载数据
G = nx.Graph()
with open('edge_list.txt', 'r') as f:
for line in f:
edge = line.strip().split()
G.add_edge(edge[0], edge[1], weight=float(edge[2]))
# 2. 运行Louvain算法
partition = community.best_partition(G, weight='weight')
# 3. 将每个社区的节点保存在一个列表中
communities = {}
for node, community_id in partition.items():
if community_id not in communities:
communities[community_id] = [node]
else:
communities[community_id].append(node)
# 4. 针对每个社区,提取子图并保存为单独的Graph对象
community_graphs = []
for community_nodes in communities.values():
community_graph = G.subgraph(community_nodes)
community_graphs.append(community_graph)
# 5. 输出每个社区中每个节点的影响力
def get_pagerank_dict(graph):
pr = nx.pagerank(graph)
pr_dict = {node: pr[node] for node in graph.nodes()}
return pr_dict
for i, community_graph in enumerate(community_graphs):
pr_dict = get_pagerank_dict(community_graph)
with open('community_{}_pagerank.txt'.format(i), 'w') as f:
for node, pr in pr_dict.items():
f.write('{} {}\n'.format(node, pr))
其中,edge_list.txt
是带权重的边列表文件,每行包含两个节点和它们之间的权重。
最后的输出结果是每个社区中每个节点的影响力,保存在单独的文件中,例如:
community_0_pagerank.txt
community_1_pagerank.txt
...
直接输出,不使用文件
如果你希望直接在代码中输出每个社区中每个节点的PageRank值,可以按以下步骤修改代码:
def get_pagerank_dict(graph):
pr = nx.pagerank(graph)
pr_dict = {node: pr[node] for node in graph.nodes()}
return pr_dict
for i, community_graph in enumerate(community_graphs):
pr_dict = get_pagerank_dict(community_graph)
print('Community {}:'.format(i))
for node, pr in pr_dict.items():
print('{}: {}'.format(node, pr))
完整的代码如下:
import networkx as nx
import community
# 1. 加载数据
G = nx.Graph()
with open('edge_list.txt', 'r') as f:
for line in f:
edge = line.strip().split()
G.add_edge(edge[0], edge[1], weight=float(edge[2]))
# 2. 运行Louvain算法
partition = community.best_partition(G, weight='weight')
# 3. 将每个社区的节点保存在一个列表中
communities = {}
for node, community_id in partition.items():
if community_id not in communities:
communities[community_id] = [node]
else:
communities[community_id].append(node)
# 4. 针对每个社区,提取子图并保存为单独的Graph对象
community_graphs = []
for community_nodes in communities.values():
community_graph = G.subgraph(community_nodes)
community_graphs.append(community_graph)
# 5. 输出每个社区中每个节点的影响力
def get_pagerank_dict(graph):
pr = nx.pagerank(graph)
pr_dict = {node: pr[node] for node in graph.nodes()}
return pr_dict
for i, community_graph in enumerate(community_graphs):
pr_dict = get_pagerank_dict(community_graph)
print('Community {}:'.format(i))
for node, pr in pr_dict.items():
print('{}: {}'.format(node, pr))
其中,edge_list.txt
是带权重的边列表文件,每行包含两个节点和它们之间的权重。
最终的输出结果是每个社区中每个节点的影响力,直接输出到屏幕上。
输出的时候保留前两位小数